ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Shi-Chien Lin, Michiko Hamasaki, Yii-Der Chuang
Nuclear Science and Engineering | Volume 71 | Number 3 | September 1979 | Pages 251-266
Technical Paper | doi.org/10.13182/NSE79-A19062
Articles are hosted by Taylor and Francis Online.
This study is basic research on some mechanical properties of Zircaloy-4 and Zircaloy-2 addressed particularly to the influence of hydrogen attack and of the hydride-orientation and -shape effect. At room temperature, Zircaloy-4 has almost the same tensile properties as does Zircaloy-2, both before and after hydriding. Zircaloy-4 may serve well if its hydrogen content is lower than 300 ppm, although hydrogen embrittlement can be alleviated by elevated temperature. If we performed a spheroidization treatment on the platelet hydrogen in the matrix, it may serve satisfactorily when the hydrogen content is 650 ppm or more. Tensile tests of annealed Zircaloy-2 specimens, of hydrided specimens, and of spheroidized specimens containing two different hydrogen concentrations were carried out at temperatures up to 700°C The strain-rate effect on the mechanical properties was also studied for Zircaloy-2 specimens. The results show that a spheroidization treatment of the hydrided Zircaloy-2 can improve its mechanical properties—i.e., its ductility, toughness, and strength—as well as its hardenability.