ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Shi-Chien Lin, Michiko Hamasaki, Yii-Der Chuang
Nuclear Science and Engineering | Volume 71 | Number 3 | September 1979 | Pages 251-266
Technical Paper | doi.org/10.13182/NSE79-A19062
Articles are hosted by Taylor and Francis Online.
This study is basic research on some mechanical properties of Zircaloy-4 and Zircaloy-2 addressed particularly to the influence of hydrogen attack and of the hydride-orientation and -shape effect. At room temperature, Zircaloy-4 has almost the same tensile properties as does Zircaloy-2, both before and after hydriding. Zircaloy-4 may serve well if its hydrogen content is lower than 300 ppm, although hydrogen embrittlement can be alleviated by elevated temperature. If we performed a spheroidization treatment on the platelet hydrogen in the matrix, it may serve satisfactorily when the hydrogen content is 650 ppm or more. Tensile tests of annealed Zircaloy-2 specimens, of hydrided specimens, and of spheroidized specimens containing two different hydrogen concentrations were carried out at temperatures up to 700°C The strain-rate effect on the mechanical properties was also studied for Zircaloy-2 specimens. The results show that a spheroidization treatment of the hydrided Zircaloy-2 can improve its mechanical properties—i.e., its ductility, toughness, and strength—as well as its hardenability.