ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
Shi-Chien Lin, Michiko Hamasaki, Yii-Der Chuang
Nuclear Science and Engineering | Volume 71 | Number 3 | September 1979 | Pages 237-250
Technical Paper | doi.org/10.13182/NSE79-A19061
Articles are hosted by Taylor and Francis Online.
We studied the dispersion and spheroidization treatment of zirconium hydride in reactor-grade zirconium alloys. Our aim was to find a workable way to improve the properties of Zircaloys. A scanning electron microscope was used to observe zirconium hydride precipitated in specimens of Zircaloy-2 and Zircaloy-4. We also examined hardness and corrosion before and after spheroidization in hydrogen. Experimental procedures and results can be summarized as follows. The specimens of low hydrogen concentration (<680 ppm) were hydrided at 420°C for 15 h, then cooled at a rate of <5 °C/min, and finally spheroidized at 520°C, just below the eutectoid temperature, for 20 to 72 h (the exact time required depending on the concentration of hydrogen). Successful spheroidization of zirconium hydride was obtained. The specimens of high hydrogen concentration (680 to 2210 ppm) were cycled near the eutectoid temperature, i.e., 547° C, for six to eight times and then annealed f or 30 to 128 h (the exact time depending on hydrogen concentration); finally, the specimens were slowly cooled at a rate of <5°C/min. It was found that for specimens with a hydrogen concentration ranging from 1000 to 2000 ppm, the heat treatment described above is satisfactory. But for specimens with a hydrogen concentration >2000 ppm, a heat treatment time >128 h at 520°C is required. The corrosion resistance of a spheroidized specimen was better than that of a specimen with platelet hydrides.