ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
M. Segev
Nuclear Science and Engineering | Volume 79 | Number 1 | September 1981 | Pages 113-118
Technical Note | doi.org/10.13182/NSE81-2
Articles are hosted by Taylor and Francis Online.
Equivalence principles reduce the lattice resonance integral of an absorber to I(σ), a resonance integral of the absorber in a homogeneous mixture with hydrogen, where σ is a microscopic cross section determined by the equivalence approximation. In practice, usually I(σ) is not a densely tabulated function; therefore, the need for an adequate σ interpolation arises. Two such interpolation schemes are found to be inaccurate for high and/or low σ values: the WIMS code interpolation , where a and b are determined from two tabulation entries I(σ2), I(σ2), and the 1DX code interpolation 1(σ) = I(∞) × (1 + A{tanh[B ln(σ) + C] − 1}), where A, B, and C are determined from three tabulation entries. The interpolation I(σ) = I(∞)[σ/(σ + η)]P is found to be accurate for all σ values. The determination of p and η involves solving a transcendental equation. An efficient technique for obtaining a numerical solution to the equation is given. In practice, the solution of the equation on a computer is virtually instantaneous.