ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
ANS Congressional Fellowship program seeks 2027 applicants
Earlier this week, ANS opened the application process for the 2027 Glenn T. Seaborg Congressional Science and Engineering Fellowship, offering ANS members an opportunity to contribute directly to federal policymaking in Washington, D.C. Applications are due June 6.
M. Segev
Nuclear Science and Engineering | Volume 79 | Number 1 | September 1981 | Pages 113-118
Technical Note | doi.org/10.13182/NSE81-2
Articles are hosted by Taylor and Francis Online.
Equivalence principles reduce the lattice resonance integral of an absorber to I(σ), a resonance integral of the absorber in a homogeneous mixture with hydrogen, where σ is a microscopic cross section determined by the equivalence approximation. In practice, usually I(σ) is not a densely tabulated function; therefore, the need for an adequate σ interpolation arises. Two such interpolation schemes are found to be inaccurate for high and/or low σ values: the WIMS code interpolation , where a and b are determined from two tabulation entries I(σ2), I(σ2), and the 1DX code interpolation 1(σ) = I(∞) × (1 + A{tanh[B ln(σ) + C] − 1}), where A, B, and C are determined from three tabulation entries. The interpolation I(σ) = I(∞)[σ/(σ + η)]P is found to be accurate for all σ values. The determination of p and η involves solving a transcendental equation. An efficient technique for obtaining a numerical solution to the equation is given. In practice, the solution of the equation on a computer is virtually instantaneous.