ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
M. Segev
Nuclear Science and Engineering | Volume 79 | Number 1 | September 1981 | Pages 113-118
Technical Note | doi.org/10.13182/NSE81-2
Articles are hosted by Taylor and Francis Online.
Equivalence principles reduce the lattice resonance integral of an absorber to I(σ), a resonance integral of the absorber in a homogeneous mixture with hydrogen, where σ is a microscopic cross section determined by the equivalence approximation. In practice, usually I(σ) is not a densely tabulated function; therefore, the need for an adequate σ interpolation arises. Two such interpolation schemes are found to be inaccurate for high and/or low σ values: the WIMS code interpolation , where a and b are determined from two tabulation entries I(σ2), I(σ2), and the 1DX code interpolation 1(σ) = I(∞) × (1 + A{tanh[B ln(σ) + C] − 1}), where A, B, and C are determined from three tabulation entries. The interpolation I(σ) = I(∞)[σ/(σ + η)]P is found to be accurate for all σ values. The determination of p and η involves solving a transcendental equation. An efficient technique for obtaining a numerical solution to the equation is given. In practice, the solution of the equation on a computer is virtually instantaneous.