ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
M. Segev
Nuclear Science and Engineering | Volume 79 | Number 1 | September 1981 | Pages 113-118
Technical Note | doi.org/10.13182/NSE81-2
Articles are hosted by Taylor and Francis Online.
Equivalence principles reduce the lattice resonance integral of an absorber to I(σ), a resonance integral of the absorber in a homogeneous mixture with hydrogen, where σ is a microscopic cross section determined by the equivalence approximation. In practice, usually I(σ) is not a densely tabulated function; therefore, the need for an adequate σ interpolation arises. Two such interpolation schemes are found to be inaccurate for high and/or low σ values: the WIMS code interpolation , where a and b are determined from two tabulation entries I(σ2), I(σ2), and the 1DX code interpolation 1(σ) = I(∞) × (1 + A{tanh[B ln(σ) + C] − 1}), where A, B, and C are determined from three tabulation entries. The interpolation I(σ) = I(∞)[σ/(σ + η)]P is found to be accurate for all σ values. The determination of p and η involves solving a transcendental equation. An efficient technique for obtaining a numerical solution to the equation is given. In practice, the solution of the equation on a computer is virtually instantaneous.