ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Countering the nuclear workforce shortage narrative
James Chamberlain, director of the Nuclear, Utilities, and Energy Sector at Rullion, has declared that the nuclear industry will not have workforce challenges going forward. “It’s time to challenge the scarcity narrative,” he wrote in a recent online article. “Nuclear isn't short of talent; it’s short of imagination in how it attracts, trains, and supports the workforce of the future.”
R. W. Ostensen, R. J. Lipinski
Nuclear Science and Engineering | Volume 79 | Number 1 | September 1981 | Pages 110-113
Technical Note | doi.org/10.13182/NSE81-A19046
Articles are hosted by Taylor and Francis Online.
A model for particle bed dryout based on the phenomenon of flooding is developed for particles greater than ∼1 mm in diameter. Dryout develops when vapor flow from boiling in the bed limits the influx of replenishing coolant. In the flooding model, the liquid-vapor counterflow is limited by the drag between the liquid and the vapor. In previous models, the counterflow is limited by the drag between the coolant and the bed particles. The flooding model predicts a dryout heat flux that depends on the square root of the diameter of the particles. Previous dryout models predict a dependence on the square of the diameter. The flooding model predicts significantly lower dryout heat fluxes for particle diameters in excess of ∼1 mm. These predictions agree well with experimental data.