ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
R. W. Ostensen, R. J. Lipinski
Nuclear Science and Engineering | Volume 79 | Number 1 | September 1981 | Pages 110-113
Technical Note | doi.org/10.13182/NSE81-A19046
Articles are hosted by Taylor and Francis Online.
A model for particle bed dryout based on the phenomenon of flooding is developed for particles greater than ∼1 mm in diameter. Dryout develops when vapor flow from boiling in the bed limits the influx of replenishing coolant. In the flooding model, the liquid-vapor counterflow is limited by the drag between the liquid and the vapor. In previous models, the counterflow is limited by the drag between the coolant and the bed particles. The flooding model predicts a dryout heat flux that depends on the square root of the diameter of the particles. Previous dryout models predict a dependence on the square of the diameter. The flooding model predicts significantly lower dryout heat fluxes for particle diameters in excess of ∼1 mm. These predictions agree well with experimental data.