ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Countering the nuclear workforce shortage narrative
James Chamberlain, director of the Nuclear, Utilities, and Energy Sector at Rullion, has declared that the nuclear industry will not have workforce challenges going forward. “It’s time to challenge the scarcity narrative,” he wrote in a recent online article. “Nuclear isn't short of talent; it’s short of imagination in how it attracts, trains, and supports the workforce of the future.”
A. Radkowsky, A. Galperin, T. Elperin
Nuclear Science and Engineering | Volume 79 | Number 1 | September 1981 | Pages 85-98
Technical Paper | doi.org/10.13182/NSE81-A19044
Articles are hosted by Taylor and Francis Online.
A careful study has been made of the effect of depletion of the fissile component of reactor fuel on the resonance component of the Doppler reactivity coefficient (DRC) for a lattice typical of a boiling water reactor (BWR). A parallel investigation has been carried out for both uranium- and thorium-based fuels. It is found that there are three principal effects, as follows, the first two of which tend to decrease the magnitude of the resonance component of the DRC and the third to increase it: direct competition of fission product absorption with that of the fertile isotopes overlapping of the fission product resonances with those of the fertile isotopes in uranium only, the formation of a large saturating resonance in 240Pu. As a result, in uranium-based fuels the resonance component of the DRC changes very little with depletion of the fissile isotope, while in thorium-based fuels there is a significant decrease in magnitude. Our results cannot be applied directly to a BWR since this would require consideration of the depletion history and void distribution over the entire core. The burnup selected for the uranium fuel was 35 000 MWd/ton, in line with current practice. In this material, effect 3 above is close to its maximum value while effects 1 and 2 increase with further burnup. Thus, it is also true that for extended burnup of uranium fuels, as are now being considered by the U.S. Department of Energy, the resonance component of the DRC is expected to decrease in magnitude.