ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
3D-printed tool at SRS makes quicker work of tank waste sampling
A 3D-printed tool has been developed at the Department of Energy’s Savannah River Site in South Carolina that can eliminate months from the job of radioactive tank waste sampling.
Robert G. Cockrell, R. B. Perez and G. R. Dalton
Nuclear Science and Engineering | Volume 19 | Number 4 | August 1964 | Pages 423-430
Technical Paper | doi.org/10.13182/NSE64-A18999
Articles are hosted by Taylor and Francis Online.
The one-speed, time-dependent, source-free Boltzmann integro-differential neutron-transport equation is used to study the time dependence of monoenergetic neutrons in a spherical homogeneous medium. By applying the Marshak boundary condition at the outer face instead of the usual vanishing of the scalar flux at some extrapolated boundary, two coupled characteristic equations are derived which relate the time constants and space eigenvalues of the sphere in terms of its geometric radius and the nuclear parameters of the medium. Tables and graphs of the fundamental space eigenvalue and time constant are given for 0.82- and 1.24-MeV neutrons in lead. Numerical values of the time constant as a function of the size of the system are compared for several PN approximations ranging from P1 to P15. The results of fitting experimental data with the characteristic equation of the P7 approximation are given; they compare favorably with published values obtained by others. A method is given for determining the angular moments of a Legendre polynomial expansion of the scattering kernel from pulsed-neutron data.