ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Kune Y. Suh
Nuclear Science and Engineering | Volume 116 | Number 4 | April 1994 | Pages 245-268
Technical Paper | doi.org/10.13182/NSE94-A18985
Articles are hosted by Taylor and Francis Online.
An integral, fast-running computational model is developed to simulate the thermal-hydraulic and melt progression behavior in a nuclear reactor rod bundle under severe fuel damage conditions. This consists of the submodels for calculating steaming from the core, hydrogen formation, heat transfer in and out of the core, cooling from core spray or injection, and, most importantly, fuel melting, relocation, and freezing with chemical interactions taking place among the material constituents in a degrading core. The integral model is applied to three German severe fuel damage tests to analyze the core thermal and melt behavior: CORA-16 (18-rod bundle and slow cooling), CORA-17 (18-rod bundle and quenching), and CORA-18 (48-rod bundle and slow cooling). Results of the temperature response of the fuel rods, the channel box, and the absorber blade; hydrogen generation from the fuel rod and the channel box; and core material eutectic formation, melt relocation, and blockage formation are discussed. Reasonable agreement is observed for component temperatures at midelevation where prediction and measurement uncertainties are minimal. However, discrepancies or uncertainties are noticed for hydrogen generation and core-melt progression. The experimentally observed peak generation of hydrogen upon reflooding is not able to be reproduced, and the total amount generated is generally underpredicted primarily because of the early relocation of the Zircaloy fuel channel box and cladding. Also, difficulties are encountered in the process of assessing the core-melt formation and the relocation model because of either modeling uncertainties or a lack of definitive metallurgical data as a function of time throughout the transient.