ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Hiroshi Motoda, Tamotsu Hayase, Yasunori Bessho, Kanji Kato
Nuclear Science and Engineering | Volume 80 | Number 4 | April 1982 | Pages 648-666
Technical Paper | doi.org/10.13182/NSE82-A18975
Articles are hosted by Taylor and Francis Online.
A coarse mesh nodal coupling method, a well-known technique often used in steady-state neutronics analysis of light water reactors, is extended to a problem of transient phenomena of boiling water reactors (BWRs). Spatial collapse is attempted to develop a multiregion neutronics model and the associated axially one-dimensional and one-point models. These models are numerically solved through the use of two approximations, quasi-static and prompt jump. The results as applied to a reference BWR core for transient analyses, initiated by artificial thermal-hydraulic disturbances, are presented to show the practicality of the approach. The nature of the optimal weighting function necessary for the spatial collapse and for the quasi-static approximation is also discussed.