ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
ANS Congressional Fellowship program seeks 2027 applicants
Earlier this week, ANS opened the application process for the 2027 Glenn T. Seaborg Congressional Science and Engineering Fellowship, offering ANS members an opportunity to contribute directly to federal policymaking in Washington, D.C. Applications are due June 6.
Hiroshi Motoda, Tamotsu Hayase, Yasunori Bessho, Kanji Kato
Nuclear Science and Engineering | Volume 80 | Number 4 | April 1982 | Pages 648-666
Technical Paper | doi.org/10.13182/NSE82-A18975
Articles are hosted by Taylor and Francis Online.
A coarse mesh nodal coupling method, a well-known technique often used in steady-state neutronics analysis of light water reactors, is extended to a problem of transient phenomena of boiling water reactors (BWRs). Spatial collapse is attempted to develop a multiregion neutronics model and the associated axially one-dimensional and one-point models. These models are numerically solved through the use of two approximations, quasi-static and prompt jump. The results as applied to a reference BWR core for transient analyses, initiated by artificial thermal-hydraulic disturbances, are presented to show the practicality of the approach. The nature of the optimal weighting function necessary for the spatial collapse and for the quasi-static approximation is also discussed.