ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
G. Reffo, F. Fabbri, K. Wisshak, F. Käppeler
Nuclear Science and Engineering | Volume 80 | Number 4 | April 1982 | Pages 630-647
Technical Paper | doi.org/10.13182/NSE82-A18974
Articles are hosted by Taylor and Francis Online.
The capture cross sections of 93Nb, 103Rh, and 181Ta were measured in the 10- to 70-keV neutron energy range, using 197Au as a standard. Most of the data points were obtained with a total uncertainty of ∼4%. This was possible because the calculation of capture gamma-ray spectra allowed reducing the most severe systematic uncertainties involved. Hauser-Feshbach calculations were performed that yielded not only the neutron cross sections of the isotopes considered up to 4-MeV neutron energy but also partial capture cross sections and capture gamma-ray spectra. For these calculations a consistent set of input parameters was determined from available experimental information or from model-guided systematics. The influence of these parameters on the results is discussed.