ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Countering the nuclear workforce shortage narrative
James Chamberlain, director of the Nuclear, Utilities, and Energy Sector at Rullion, has declared that the nuclear industry will not have workforce challenges going forward. “It’s time to challenge the scarcity narrative,” he wrote in a recent online article. “Nuclear isn't short of talent; it’s short of imagination in how it attracts, trains, and supports the workforce of the future.”
V. V. Verbinski, C. Cassapakis, R. L. Pease, H. L. Scott
Nuclear Science and Engineering | Volume 70 | Number 1 | April 1979 | Pages 66-72
Technical Paper | doi.org/10.13182/NSE79-A18928
Articles are hosted by Taylor and Francis Online.
The validity of the silicon displacement cross section, D(E), was investigated by simultaneous measurements of neutron spectra (E) and of the accumulated damage D = K induced in 2N2222A transistors. The measured values of (E) were folded in with D(E) to obtain eq, the 1-MeV equivalent fluence for damage to silicon, and the ratios D/eq = K/eq ≡ K were obtained for diverse shapes of (E) to determine the stability of K to (E) variations. The value of K was seen to be constant (within 4 to 5%, 1σ) within roughly the same standard deviation as the D = K measurements for two modified reactor spectra that varied by as much as 1000% above a few MeV when normalized at the 0.2-MeV “threshold” of D(E). This helps substantiate the validity of D(E) in characterizing diverse neutron fields for radiation damage of a practical silicon transistor. Earlier studies with large-volume silicon diodes, for monoenergetic neutrons of 0.7 to 14 MeV, tend to corroborate the D(E) validity for transistors over this energy range. These results attest to the accuracy of the shape in terms of gross structure of D(E), which is governed by the accuracy of the ENDF/B-IV neutron cross-section evaluation used and of the Robinson functional representation of the Lindhard factor for determining the fraction of recoil-atom and charged particle kinetic energy that is available to cause displacements.