ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
V. V. Verbinski, C. Cassapakis, R. L. Pease, H. L. Scott
Nuclear Science and Engineering | Volume 70 | Number 1 | April 1979 | Pages 66-72
Technical Paper | doi.org/10.13182/NSE79-A18928
Articles are hosted by Taylor and Francis Online.
The validity of the silicon displacement cross section, D(E), was investigated by simultaneous measurements of neutron spectra (E) and of the accumulated damage D = K induced in 2N2222A transistors. The measured values of (E) were folded in with D(E) to obtain eq, the 1-MeV equivalent fluence for damage to silicon, and the ratios D/eq = K/eq ≡ K were obtained for diverse shapes of (E) to determine the stability of K to (E) variations. The value of K was seen to be constant (within 4 to 5%, 1σ) within roughly the same standard deviation as the D = K measurements for two modified reactor spectra that varied by as much as 1000% above a few MeV when normalized at the 0.2-MeV “threshold” of D(E). This helps substantiate the validity of D(E) in characterizing diverse neutron fields for radiation damage of a practical silicon transistor. Earlier studies with large-volume silicon diodes, for monoenergetic neutrons of 0.7 to 14 MeV, tend to corroborate the D(E) validity for transistors over this energy range. These results attest to the accuracy of the shape in terms of gross structure of D(E), which is governed by the accuracy of the ENDF/B-IV neutron cross-section evaluation used and of the Robinson functional representation of the Lindhard factor for determining the fraction of recoil-atom and charged particle kinetic energy that is available to cause displacements.