ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
ANS Congressional Fellowship program seeks 2027 applicants
Earlier this week, ANS opened the application process for the 2027 Glenn T. Seaborg Congressional Science and Engineering Fellowship, offering ANS members an opportunity to contribute directly to federal policymaking in Washington, D.C. Applications are due June 6.
M. L. Williams
Nuclear Science and Engineering | Volume 70 | Number 1 | April 1979 | Pages 20-36
Technical Paper | doi.org/10.13182/NSE79-3
Articles are hosted by Taylor and Francis Online.
A perturbation formulation is developed for the space-energy-dependent burnup equations describing depletion and transmutation of nuclide densities in a coupled neutron-nuclide field, such as a reactor core. The formulation is developed in a form consistent with the computational methods used for depletion analysis. The analysis technique currently employed in most burnup calculations is first reviewed as a method for describing the nonlinear coupling between the flux and nuclide fields. It is shown that, based on the present formulation, three adjoint equations (for flux shape, flux normalization, and nuclide density) are required to account for the coupled variations arising from variations in initial conditions and nuclear data. The adjoint equations are derived in detail using a variational principle, and an algorithm is suggested for solving the coupled equations backward through time. Perturbation expressions are used to define sensitivity coefficients for responses that depend on the coupled interaction between the neutron and nuclide fields. The relation between coupled and noncoupled sensitivity theory is illustrated. Finally, two analytic example problems are solved that determine the sensitivity of some final nuclide concentration to changes in initial conditions. Results obtained from direct calculation and from the coupled perturbation theory are compared.