ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Countering the nuclear workforce shortage narrative
James Chamberlain, director of the Nuclear, Utilities, and Energy Sector at Rullion, has declared that the nuclear industry will not have workforce challenges going forward. “It’s time to challenge the scarcity narrative,” he wrote in a recent online article. “Nuclear isn't short of talent; it’s short of imagination in how it attracts, trains, and supports the workforce of the future.”
M. L. Williams
Nuclear Science and Engineering | Volume 70 | Number 1 | April 1979 | Pages 20-36
Technical Paper | doi.org/10.13182/NSE79-3
Articles are hosted by Taylor and Francis Online.
A perturbation formulation is developed for the space-energy-dependent burnup equations describing depletion and transmutation of nuclide densities in a coupled neutron-nuclide field, such as a reactor core. The formulation is developed in a form consistent with the computational methods used for depletion analysis. The analysis technique currently employed in most burnup calculations is first reviewed as a method for describing the nonlinear coupling between the flux and nuclide fields. It is shown that, based on the present formulation, three adjoint equations (for flux shape, flux normalization, and nuclide density) are required to account for the coupled variations arising from variations in initial conditions and nuclear data. The adjoint equations are derived in detail using a variational principle, and an algorithm is suggested for solving the coupled equations backward through time. Perturbation expressions are used to define sensitivity coefficients for responses that depend on the coupled interaction between the neutron and nuclide fields. The relation between coupled and noncoupled sensitivity theory is illustrated. Finally, two analytic example problems are solved that determine the sensitivity of some final nuclide concentration to changes in initial conditions. Results obtained from direct calculation and from the coupled perturbation theory are compared.