ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Paul G. Lorenzini, Alan H. Robinson
Nuclear Science and Engineering | Volume 44 | Number 1 | April 1971 | Pages 27-36
Technical Paper | doi.org/10.13182/NSE71-A18902
Articles are hosted by Taylor and Francis Online.
The spectral-synthesis method is investigated to assess its applicability for solving the diffusion equation in fast reactor design. The equations are derived so they may be solved by a standard diffusion theory code that allows upscattering. A reference 1000-MW(e) fast reactor is studied and two-dimensional solutions are obtained. The problem of selecting trial functions is examined and four different sets are used in the calculations. The results are compared with few-group calculations to test both accuracy and running times. The few-group and synthesis approximations are, in turn, compared with a 26-group solution which is treated as an exact solution. Some numerical instabilities are experienced and examined. It is concluded that the instabilities are caused by a complete coupling between equations in the scattering matrix. The accuracy of the synthesis approximation is comparable with the few-group approximation for calculating eigenvalues and is slightly superior for determining the flux in the core.