ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Paul G. Lorenzini, Alan H. Robinson
Nuclear Science and Engineering | Volume 44 | Number 1 | April 1971 | Pages 27-36
Technical Paper | doi.org/10.13182/NSE71-A18902
Articles are hosted by Taylor and Francis Online.
The spectral-synthesis method is investigated to assess its applicability for solving the diffusion equation in fast reactor design. The equations are derived so they may be solved by a standard diffusion theory code that allows upscattering. A reference 1000-MW(e) fast reactor is studied and two-dimensional solutions are obtained. The problem of selecting trial functions is examined and four different sets are used in the calculations. The results are compared with few-group calculations to test both accuracy and running times. The few-group and synthesis approximations are, in turn, compared with a 26-group solution which is treated as an exact solution. Some numerical instabilities are experienced and examined. It is concluded that the instabilities are caused by a complete coupling between equations in the scattering matrix. The accuracy of the synthesis approximation is comparable with the few-group approximation for calculating eigenvalues and is slightly superior for determining the flux in the core.