ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
Paul G. Lorenzini, Alan H. Robinson
Nuclear Science and Engineering | Volume 44 | Number 1 | April 1971 | Pages 27-36
Technical Paper | doi.org/10.13182/NSE71-A18902
Articles are hosted by Taylor and Francis Online.
The spectral-synthesis method is investigated to assess its applicability for solving the diffusion equation in fast reactor design. The equations are derived so they may be solved by a standard diffusion theory code that allows upscattering. A reference 1000-MW(e) fast reactor is studied and two-dimensional solutions are obtained. The problem of selecting trial functions is examined and four different sets are used in the calculations. The results are compared with few-group calculations to test both accuracy and running times. The few-group and synthesis approximations are, in turn, compared with a 26-group solution which is treated as an exact solution. Some numerical instabilities are experienced and examined. It is concluded that the instabilities are caused by a complete coupling between equations in the scattering matrix. The accuracy of the synthesis approximation is comparable with the few-group approximation for calculating eigenvalues and is slightly superior for determining the flux in the core.