ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
J. J. Volpe, J. Hardy, Jr., D. Klein
Nuclear Science and Engineering | Volume 40 | Number 1 | April 1970 | Pages 116-127
Technical Paper | doi.org/10.13182/NSE70-A18883
Articles are hosted by Taylor and Francis Online.
Thermal disadvantage factors and spectral indexes have been measured in a variety of light-water-moderated lattices. One series contained slightly enriched uranium rods in hexagonal geometry and another series used natural-uranium fuel in slab geometry. The detectors used were 164Dy, 176Lu, and 239Pu. Full energy range (0 to 10 MeV) Monte Carlo calculations with explicit cell-geometry representations were performed using the RECAP program. In addition, thermal energy range (0 to 0.625 eV) calculations were obtained with the Monte Carlo program MARC as well as with the integral transport-theory-code THERMOS. The purpose of these investigations was to test the adequacy of the various water scattering kernels—Nelkin, Koppel, and Haywood—for a broad range of thermal-flux characteristics: from a soft moderator spectrum with a steep spatial gradient to a very hard spectrum which was relatively flat as a function of position. The conclusions obtained were as follows. Calculated spectral indexes using the Haywood kernel were 2 to 3% higher than experiment, on the average, in the fuel region of these cells. Use of the Koppel kernel removed most of this disagreement in the case of 176Lu but the comparison for 239Pu remained unchanged. On the basis of these results, the thermal-flux spectrum obtained with the Haywood model appears to be slightly too hard. With regard to the disadvantage factors, good agreement was generally obtained between theory and measurement except for the tightest lattices. The calculated disadvantage factors were found to be insensitive to the kernel model selected. The effects from including thermal-scattering-pattern treatments above P1 as well as a spatially dependent and anisotropic source-to-thermal description were found to be small in these cells, < 2%.