ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
J. Hardy, Jr., D. Klein, J. J. Volpe
Nuclear Science and Engineering | Volume 40 | Number 1 | April 1970 | Pages 101-115
Technical Paper | doi.org/10.13182/NSE70-A18882
Articles are hosted by Taylor and Francis Online.
The full-range Monte Carlo program RECAP was used in a consistent analysis of parameters measured in seven H2O-moderated uranium lattices: four were lattices of slightly enriched rods and three were natural-uranium-slab lattices. The most important parameters were: epithermal-to-thermal ratios for 238U capture (ρ28) and for 235U fission (δ25), ratio of 238U fission-to-235U fission (δ28), eigenvalue, integral fast/epithermal spectrum comparisons with a variety of detectors, and resonance integrals for isolated uranium and UO2 rods (calculated with the Monte Carlo program RESQ, supplemented by ZUT and TUZ at higher energies). The analysis of these lattices was fairly unambiguous and served to test the input nuclear data for 238U, 235U, and H2O. With one exception, leakage was small (< 20%) and parameters were measured in nearly asymptotic flux spectra. These covered a wide range of hardness as reflected in the change of parameters: ρ28 ranged from 0.5 to 12; δ25 from 0.04 to 1.1; and δ28 from 0.05 to 0.44. The Monte Carlo cell calculations were corrected for leakage by means of the homogenized lattice programs P3MG and MUFT-MAGMA. With a straightforward choice of current “best” nuclear data, the calculations reproduce virtually all the parameters over the whole range of lattices. There are two qualifications: some reduction of smooth 238U capture integral is required to match the lattice measurements (by an amount barely compatible with the isolated rod measurements), and there is too much calculated epithermal 235U fission in the very tight lattices.