ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
A. Gibello, F. V. Orestano, F. Pistella, E. Santandrea
Nuclear Science and Engineering | Volume 40 | Number 1 | April 1970 | Pages 51-72
Technical Paper | doi.org/10.13182/NSE70-A18879
Articles are hosted by Taylor and Francis Online.
Spectral indexes have been measured in homogeneous systems (solutions of europium and boron). The measured values have been compared with the results of spectra calculations and, independently, have been utilized for a correlation method devised to deduce the reaction rates which are undetectable directly. The reliability of the THERMOS code for spectra calculations in such systems has been shown. A satisfactory test of the correlation method has been performed. The adequacy of the cross-section sets available in the literature has been shown for the detectors 197Au, 63Cu, 55Mn, 176Lu, 239Pu, and 235U. The sets available for 151Eu and 175Lu are not satisfactory: new evaluations have been carried out by properly utilizing measurements reported in the literature and/or new measurements performed for this purpose in a known spectrum. When using the new sets, the agreement between calculated and experimental spectral indexes in the absorber solutions is significantly improved. When reliable cross sections are available for the detectors, the correlation method can be considered a powerful tool for the evaluation of an unknown reaction rate: for instance the 239Pu absorption rate in the solutions is evaluated by means of the measured activation rates without introducing uncertainties due to the correlation procedure itself.