ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Alan M. Winslow
Nuclear Science and Engineering | Volume 32 | Number 1 | April 1968 | Pages 101-110
Technical Paper | doi.org/10.13182/NSE68-A18829
Articles are hosted by Taylor and Francis Online.
A formulation of asymptotic neutron diffusion theory for numerical calculations is presented which provides in simple ways for physical features not included in the elementary form of the theory. These are: 1) exponential time dependence, which is provided for by a transformation to steady state; 2) effect of surface curvature on the linear extrapolation length, provided for by means of the principal radii of curvature; 3) material discontinuities, provided for by limiting the current at an interface to its free surface value; and 4) prescribed sources and velocity dependence, provided for by a generalization of the number of secondary neutrons per collision. Numerical results are presented showing that the form of time-dependent multigroup neutron diffusion theory thus obtained is more accurate than the ordinary multigroup formulation especially for small or inhomogeneous systems.