ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
3D-printed tool at SRS makes quicker work of tank waste sampling
A 3D-printed tool has been developed at the Department of Energy’s Savannah River Site in South Carolina that can eliminate months from the job of radioactive tank waste sampling.
Genn Saji
Nuclear Science and Engineering | Volume 32 | Number 1 | April 1968 | Pages 93-100
Technical Paper | doi.org/10.13182/NSE68-A18828
Articles are hosted by Taylor and Francis Online.
An explicit time-dependent two-group flux, expressed by a series of space modes, is established when a forced oscillation is applied to a reactor. The self-consistent time-dependency method developed here minimizes necessary mathematical transformations and enables one to clearly visualize the physical reasons why the higher space modes are only excited at high frequencies. The conditions necessary for a particular higher space mode to be appreciably excited and detected are discussed in detail. The results show that the major factor is due to the increase of the input frequency as compared with the decay constants of several higher space modes at high frequencies. This method was applied to the NORA reactor for which the space-dependent transfer functions have been measured. Results of the calculations closely agree with the published experimental results as well as with theoretical gain and phase shift curves obtained by the conventional modal expansion-Laplace transform method. The relative amplitude of each higher space mode with respect to the fundamental mode shows the rate of convergence of the modal expansion method.