ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
IAEA program uses radioisotopes to protect rhinos
After two years of testing, the International Atomic Energy Agency and the University of the Witwatersrand in Johannesburg, South Africa, have begun officially implementing the Rhisotope Project, an innovative effort to combat rhino poaching and trafficking by leveraging nuclear technology.
W. A. Coleman
Nuclear Science and Engineering | Volume 32 | Number 1 | April 1968 | Pages 76-81
Technical Paper | doi.org/10.13182/NSE68-1
Articles are hosted by Taylor and Francis Online.
The first section of this paper is a mathematical construction of a certain Monte Carlo procedure for sampling from the distribution The construction begins by defining a particular random variable λ. The distribution function of λ is developed and found to be identical to F(X). The definition of λ describes the sampling procedure. Depending on the behavior of Σ(x), it may be more efficient to sample from F(X) by obtaining realizations of λ than by the more conventional procedure described in the paper. Section II is a discussion of applications of the technique to problems in radiation transport where F(X) is frequently encountered as the distribution function for nuclear collisions. The first application is in charged particle transport where Σ(x) is essentially a continuous function of x. An application in complex geometries where Σ(x) is a step function, and changes values numerous times over a mean path, is also cited. Finally, it is pointed out that the technique has been used to improve the efficiency of estimating certain quantities, such as the number of absorptions in a material.