ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Chia-Jung Hsu, George C. Lindauer
Nuclear Science and Engineering | Volume 32 | Number 1 | April 1968 | Pages 16-29
Technical Paper | doi.org/10.13182/NSE68-A18819
Articles are hosted by Taylor and Francis Online.
The influence of axial conduction on thermal entry-region temperature distribution and heat transfer in Hartmann's flow through a magnetohydrodynamic channel is analytically investigated. Viscous dissipation and Joule heating are also considered in the analysis. The temperature solutions, which are found to be Peclet number dependent, reduce to those corresponding to negligible axial conduction as the Peclet number approaches infinity. The appropriate first 12 eigenvalues and the corresponding eigenfunctions have been determined for Hartmann numbers of 1, 4, and 10 and for a wide range of Peclet numbers. The series expansion coefficients, applicable to an arbitrary value of the heat-generation parameter, have been evaluated for a few electric-field magnitude factors of practical importance. By employing the computed constants, the effect of the electric-field magnitude factor and the heat-generation parameter as well as axial conduction on the local temperature profiles and Nusselt numbers are examined and reported.