ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
William E. Loewe
Nuclear Science and Engineering | Volume 21 | Number 4 | April 1965 | Pages 536-549
Technical Paper | doi.org/10.13182/NSE65-A18798
Articles are hosted by Taylor and Francis Online.
The two-group neutron diffusion equations have been applied to multiregion reactors to obtain the transfer function for an arbitrarily located, localized oscillatory absorber and an arbitrarily located point of observation. Results obtained from a digital computer program written for the case of symmetrical slab geometry extend previous work on space-dependent zero-power transfer functions, and establish criteria for calibrating reactor control rods by oscillation. Simple physical models suggested to explain the space-dependent effects are intuitively satisfying, agree with the computed results, and are expressed in terms that permit general application. One model describes special high-frequency behavior of the phase angle of the transfer function; another model describes the exaggerated space-dependent effects observed previously in rod calibration by oscillation.