ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
R. N. Hwang
Nuclear Science and Engineering | Volume 21 | Number 4 | April 1965 | Pages 523-535
Technical Paper | doi.org/10.13182/NSE65-A18797
Articles are hosted by Taylor and Francis Online.
Because of great concern about the effect of resonance interactions on the Doppler-effect calculations, extensive studies have been made for various dilute systems. A simplified method which allows the simultaneous occurrence of more than one type of interference has been developed to calculate the temperature-dependent effective cross sections. Consequently, the numerical work involved is simplified considerably. Calculations have been made for typical PU239-U238, U235-U238, and Pu239-U238-Pu240 systems. The results of these calculations seem to indicate that the resonance interference will substantially increase the negative Doppler effect of the system as compared to the case where resonance interferences are ignored.