ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
K. D. Lathrop
Nuclear Science and Engineering | Volume 21 | Number 4 | April 1965 | Pages 498-508
Technical Paper | doi.org/10.13182/NSE65-A18794
Articles are hosted by Taylor and Francis Online.
The effects of anisotropic scattering approximations in the monoenergetic transport equation are evaluated by calculating discrete eigenvalues, fluxes due to a plane source, and slab critical half-thicknesses, all for homogeneous media. Relative to P2 scattering approximation results, which are deemed accurate because of their agreement with P4 solutions, the simple transport approximation overestimates eigenvalues and underestimates half-thicknesses in multiplying media while a P1 scattering approximation underestimates eigenvalues and overestimates thicknesses, but with smaller error. In the plane source problem, where the detailed flux behavior is observed, the transport approximation is even less accurate; but an extended transport approximation is found to be much more adequate. In overall effectiveness, in order of increasing accuracy, the approximations considered are ranked as follows: 1) transport, 2) forward-backward, 3) first-order Legendre, 4) extended transport, and 5) higher order Legendre. Some evidence is given to indicate that, even for severely anisotropic scattering, relatively low-order Legendre approximations are sufficient to include anisotropic scattering effects.