ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
R. I. Smith
Nuclear Science and Engineering | Volume 21 | Number 4 | April 1965 | Pages 481-489
Technical Paper | doi.org/10.13182/NSE65-A18792
Articles are hosted by Taylor and Francis Online.
The change in k∞ of a heterogeneous lattice caused by a uniform change in the temperature of the fuel has been measured, using the Physical Constants Testing Reactor (PCTR). The test lattice was moderated with graphite and fueled with concentric-tube elements of slightly enriched uranium metal. The temperature of the fuel was varied from 297 to 1241°K. The change in k∞ with temperature was nonlinear and could be represented by the relation where T is in degrees Kelvin. The experimentally measured values of the constants were α = (−0.308 ± 0.004), β = (−0.120 ± 0.004), γ = (−0.085 ± 0.004). The unit functions, U, represent the changes in k∞ caused by the isothermal volume expansion of the fuel element when the uranium metal undergoes transformations in its crystal structure from alpha to beta and from beta to gamma phases. The term C is a normalization factor related to the lattice under study. The reactivity techniques employed here are shown to be four times more sensitive than activation methods for determining the functional relationship between the effective resonance integral of a fuel element and the temperature of the element. The constant, α, has been experimentally separated into two components: αv = (−0.240 ± 0.04). which is associated with the average interior temperature of the fuel, and αs = (−0.068 ± 0.04), which is associated with the temperature of the surface of the fuel. This separation allows treatment of nonuniform temperature distribution in the fuel.