ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
Donald Strominger and Gordon Schlesinger
Nuclear Science and Engineering | Volume 21 | Number 4 | April 1965 | Pages 441-450
Technical Paper | doi.org/10.13182/NSE65-A18788
Articles are hosted by Taylor and Francis Online.
Solid-state p-n junction counters have been fabricated to measure fission rates of materials with different fission thresholds. The fission reactions are caused by neutrons varying in energy from thermal energies for U235 to 1.5 MeV for Th232. The data gathered from these solid-state fission counters have been used to compare experimental with calculated fission rates in the AETR cores. The fission counter is assembled by placing an electroplated foil of a fissionable material near a p-n junction detector. An aluminum cap is placed over each detector and foil to form a neat, compact assembly. The resulting counter is small enough to fit inside a reactor with minimum distortion to the neutron spectrum. Fission counters employing Th232, U233, U234, U235, U236, U238, Np237, and Pu239 as the principal fissionable material have been successfully fabricated. These solid-state fission counters have proved reliable instruments to measure neutron fluxes in high gamma-ray fields. True fission events are easily separated from other induced reactions in the counter.