ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Donald Strominger and Gordon Schlesinger
Nuclear Science and Engineering | Volume 21 | Number 4 | April 1965 | Pages 441-450
Technical Paper | doi.org/10.13182/NSE65-A18788
Articles are hosted by Taylor and Francis Online.
Solid-state p-n junction counters have been fabricated to measure fission rates of materials with different fission thresholds. The fission reactions are caused by neutrons varying in energy from thermal energies for U235 to 1.5 MeV for Th232. The data gathered from these solid-state fission counters have been used to compare experimental with calculated fission rates in the AETR cores. The fission counter is assembled by placing an electroplated foil of a fissionable material near a p-n junction detector. An aluminum cap is placed over each detector and foil to form a neat, compact assembly. The resulting counter is small enough to fit inside a reactor with minimum distortion to the neutron spectrum. Fission counters employing Th232, U233, U234, U235, U236, U238, Np237, and Pu239 as the principal fissionable material have been successfully fabricated. These solid-state fission counters have proved reliable instruments to measure neutron fluxes in high gamma-ray fields. True fission events are easily separated from other induced reactions in the counter.