ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Work advances on X-energy’s TRISO fuel fabrication facility
Small modular reactor developer X-energy, together with its fuel-developing subsidiary TRISO-X, has selected Clark Construction Group to finish the building construction phase of its advanced nuclear fuel fabrication facility, known as TX-1, in Oak Ridge, Tenn. It will be the first of two Oak Ridge facilities built to manufacture the company’s TRISO fuel for use in its Xe-100 SMR. The initial deployment of the Xe-100 will be at Dow Chemical Company’s UCC Seadrift Operations manufacturing site on Texas’s Gulf Coast.
Donald Strominger and Gordon Schlesinger
Nuclear Science and Engineering | Volume 21 | Number 4 | April 1965 | Pages 441-450
Technical Paper | doi.org/10.13182/NSE65-A18788
Articles are hosted by Taylor and Francis Online.
Solid-state p-n junction counters have been fabricated to measure fission rates of materials with different fission thresholds. The fission reactions are caused by neutrons varying in energy from thermal energies for U235 to 1.5 MeV for Th232. The data gathered from these solid-state fission counters have been used to compare experimental with calculated fission rates in the AETR cores. The fission counter is assembled by placing an electroplated foil of a fissionable material near a p-n junction detector. An aluminum cap is placed over each detector and foil to form a neat, compact assembly. The resulting counter is small enough to fit inside a reactor with minimum distortion to the neutron spectrum. Fission counters employing Th232, U233, U234, U235, U236, U238, Np237, and Pu239 as the principal fissionable material have been successfully fabricated. These solid-state fission counters have proved reliable instruments to measure neutron fluxes in high gamma-ray fields. True fission events are easily separated from other induced reactions in the counter.