ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
H. Waldinger, J. Agresta, G. Goertzel
Nuclear Science and Engineering | Volume 18 | Number 4 | April 1964 | Pages 459-467
Technical Paper | doi.org/10.13182/NSE64-A18764
Articles are hosted by Taylor and Francis Online.
A method is formulated for numerical integration of the spherical-harmonics equations in the case of cylindrical geometry. This method avoids many of the difficulties of the usual analytical techniques and allows space-varying sources as well as regions of low neutron cross section and large physical size. The usual spherical-harmonic equations (truncated) are presented in cylindrical geometry. To obtain a set of equations which (because they are more intuitive in form) lead to readily manageable numerical solution, the equations are converted to the discrete ordinate form in cylindrical geometry. From the discrete-ordinate equations, one may readily discuss inward- and outward-going neutrons. Based on this, reflection matrices are introduced at each radius r, one describing the reflection of inwardly directed neutrons by the medium inward of r and the other describing the reflection of outwardly directed neutrons by the medium outward of r. The complete source-independent properties of the medium are described by these reflection matrices. Furthermore, the matrices can be obtained by numerical integration in a single pass, one by integrating from the center out and the other by integrating from the outside in. The source can be treated by considering at each radius r the flux that escapes outward due to sources inward of r and by considering separately the flux that goes inward due to sources outward of r. The first of these escape fluxes is obtained by integration outward from the origin, using the corresponding reflection matrix, the second by integration inwards. Once the above quantities have been found, the fluxes are obtained by solution of simultaneous algebraic equations (no further integrations). Numerical results necessary for the use of this method in the P3 approximation are also given.