ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Deep Fission raises $30M in financing
Since the Department of Energy kicked off a 10-company race with its Nuclear Reactor Pilot Program to bring test reactors on line by July 4, 2026, the industry has been waiting for new headlines proclaiming progress. Aalo Atomics broke ahead of the pack first by announcing last week that it had broken ground on its 50-MWe Aalo-X at Idaho National Laboratory.
J. R. Fagan, J. O. Mingle
Nuclear Science and Engineering | Volume 18 | Number 4 | April 1964 | Pages 443-447
Technical Paper | doi.org/10.13182/NSE64-A18762
Articles are hosted by Taylor and Francis Online.
The standard analytical approaches to calculating the maximum temperature and surface -heat-flow rate in nuclear reactor fuel plates over-estimates both of these quantities due to the omission of conduction along the axis of the plate. The more general problem, including axial conduction, has been solved for fuel plates in which the clad and meat can be assumed to have the same thermal properties. Calculations made for a natural-circulation reactor show over-estimates of the maximum surface heat flow rate of 4.5 percent and of the maximum temperature rise of 4.8 percent. The error is minimized for systems having a large convection heat-transfer coefficient and will be less than 0.5 percent for most power reactor systems.