ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
What’s in your Dubai chocolate? Nuclear scientists test pistachios for toxins
For the uninitiated, Dubai chocolate is a candy bar filled with pistachio and tahini cream and crispy pastry recently popularized by social media influencers. While it’s easy to dismiss as a viral craze now past its peak, the nutty green confection has spiked global pistachio demand, and growers and processors are ramping up production. That means more pistachios need to be tested for aflatoxins—a byproduct of a common crop mold.
J. R. Fagan, J. O. Mingle
Nuclear Science and Engineering | Volume 18 | Number 4 | April 1964 | Pages 443-447
Technical Paper | doi.org/10.13182/NSE64-A18762
Articles are hosted by Taylor and Francis Online.
The standard analytical approaches to calculating the maximum temperature and surface -heat-flow rate in nuclear reactor fuel plates over-estimates both of these quantities due to the omission of conduction along the axis of the plate. The more general problem, including axial conduction, has been solved for fuel plates in which the clad and meat can be assumed to have the same thermal properties. Calculations made for a natural-circulation reactor show over-estimates of the maximum surface heat flow rate of 4.5 percent and of the maximum temperature rise of 4.8 percent. The error is minimized for systems having a large convection heat-transfer coefficient and will be less than 0.5 percent for most power reactor systems.