ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DOE-EM awards $74.8M Oak Ridge support services contract
The Department of Energy’s Office of Environmental Management has awarded a five-year contract worth up to $74.8 million to Independent Strategic Management Solutions for professional support services at the Oak Ridge Office of Environmental Management site in Oak Ridge, Tenn.
W. Ciechanowicz, K. O. Solberg
Nuclear Science and Engineering | Volume 36 | Number 3 | June 1969 | Pages 361-371
Technical Paper | doi.org/10.13182/NSE69-A18734
Articles are hosted by Taylor and Francis Online.
The scope of the paper was to theoretically check the compromise in the control-strategy design to decrease the required number of computations. Two types of HBWR control system models have been investigated: one involves the control-strategy calculation for the overall dynamic system; in the other case, the overall system has been split into two systems characterized by smaller number of state variables. The interactions between the split systems have been included by use of crosscoupling controller elements. The comparison between considered control models has shown similar dynamic behavior of the investigated state variables. The main advantage of splitting the system is decreasing the order of state vectors taken into account in the control-strategy calculations. The constraint problem has been considered by making use of Lagrange multiplier formalism and when the physical amplitude limitations are imposed on the controller signals. The comparison of both types of constraints has shown that the latter is quite satisfactory simplification in the constraint problem of the controller signals. The advantage of applying the physical limitation of the controller signal amplitude is that this type of constraint does not require the computer memory capacity for storage of the optimum trajectory space.