ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Ricardo Artigas, H. E. Hungerford
Nuclear Science and Engineering | Volume 36 | Number 3 | June 1969 | Pages 295-303
Technical Paper | doi.org/10.13182/NSE69-A18727
Articles are hosted by Taylor and Francis Online.
Expressions for the neutron flux at the exit of a cylindrical duct of radius δ and length l (with λ = δ2/l2), have been found by the use of the albedo concept and by the method of single-collision sources in the duct wall, based on monoenergetic integral transport theory. In contrast with other methods of solution, the isotropic area source of radius δ at the duct entrance is not approximated by a point source, and the numerical evaluation of integrals does not impose restrictions on the values of λ. Calculation of the neutron flux at the duct exit is expedited by the use of the tables given, which are a function of the duct geometry and were generated from the numerical evaluation of the integrals that appear in the expressions for the flux. Comparison of the results as predicted by the formulas developed in this paper and those predicted by already existing formulas with the results of a stochastic neutron-transport code indicates that the formulas developed here are always in better agreement with the results of the code. For values of λ < 1, the formulas developed here differ by a maximum of ± 10%, while the existing formulas differ by a maximum of more than 100%.