ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
Ricardo Artigas, H. E. Hungerford
Nuclear Science and Engineering | Volume 36 | Number 3 | June 1969 | Pages 295-303
Technical Paper | doi.org/10.13182/NSE69-A18727
Articles are hosted by Taylor and Francis Online.
Expressions for the neutron flux at the exit of a cylindrical duct of radius δ and length l (with λ = δ2/l2), have been found by the use of the albedo concept and by the method of single-collision sources in the duct wall, based on monoenergetic integral transport theory. In contrast with other methods of solution, the isotropic area source of radius δ at the duct entrance is not approximated by a point source, and the numerical evaluation of integrals does not impose restrictions on the values of λ. Calculation of the neutron flux at the duct exit is expedited by the use of the tables given, which are a function of the duct geometry and were generated from the numerical evaluation of the integrals that appear in the expressions for the flux. Comparison of the results as predicted by the formulas developed in this paper and those predicted by already existing formulas with the results of a stochastic neutron-transport code indicates that the formulas developed here are always in better agreement with the results of the code. For values of λ < 1, the formulas developed here differ by a maximum of ± 10%, while the existing formulas differ by a maximum of more than 100%.