ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DOE-EM awards $74.8M Oak Ridge support services contract
The Department of Energy’s Office of Environmental Management has awarded a five-year contract worth up to $74.8 million to Independent Strategic Management Solutions for professional support services at the Oak Ridge Office of Environmental Management site in Oak Ridge, Tenn.
Ricardo Artigas, H. E. Hungerford
Nuclear Science and Engineering | Volume 36 | Number 3 | June 1969 | Pages 295-303
Technical Paper | doi.org/10.13182/NSE69-A18727
Articles are hosted by Taylor and Francis Online.
Expressions for the neutron flux at the exit of a cylindrical duct of radius δ and length l (with λ = δ2/l2), have been found by the use of the albedo concept and by the method of single-collision sources in the duct wall, based on monoenergetic integral transport theory. In contrast with other methods of solution, the isotropic area source of radius δ at the duct entrance is not approximated by a point source, and the numerical evaluation of integrals does not impose restrictions on the values of λ. Calculation of the neutron flux at the duct exit is expedited by the use of the tables given, which are a function of the duct geometry and were generated from the numerical evaluation of the integrals that appear in the expressions for the flux. Comparison of the results as predicted by the formulas developed in this paper and those predicted by already existing formulas with the results of a stochastic neutron-transport code indicates that the formulas developed here are always in better agreement with the results of the code. For values of λ < 1, the formulas developed here differ by a maximum of ± 10%, while the existing formulas differ by a maximum of more than 100%.