ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leak-tightness test on deck for SRS mega unit
The Savannah River Site in South Carolina will begin a leak-tightness test to qualify the megavolume Saltstone Disposal Unit (SDU) 10 to store up to 33 million gallons of solidified, decontaminated salt solution produced at the site.
R. N. Blomquist, E. E. Lewis
Nuclear Science and Engineering | Volume 73 | Number 2 | February 1980 | Pages 125-139
Technical Paper | doi.org/10.13182/NSE80-A18693
Articles are hosted by Taylor and Francis Online.
The variational formulation of the even-parity form of the within-group neutron transport equation is generalized to include complex trial functions. The introduction of transverse leakage effects through the buckling term exp(iB·r) leads, in general, to a coupled set of Euler equations for the real and imaginary even-parity flux components. The coupling between real and imaginary flux components is retained in both discrete-ordinates and finite element angular approximations. Employment of the spherical harmonics approximations in angle, however, leads to an uncoupled set of Euler equations if an appropriate choice of axes is made. Hence, a rigorous buckling treatment of third-dimensional leakage can be incorporated into two-dimensional transport computations without solving for the imaginary flux component. The foregoing spherical harmonic formulation is combined with finite element discretization in space in the multigroup criticality code FESH. One- and multigroup results are presented to demonstrate the elimination of ray effects and to examine the errors introduced by the DB2 leakage correction used in conventional transport calculations.