ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Keisuke Kobayashi, Hiroshi Nishihara
Nuclear Science and Engineering | Volume 28 | Number 1 | April 1967 | Pages 93-104
Technical Paper | doi.org/10.13182/NSE67-A18671
Articles are hosted by Taylor and Francis Online.
The group-diffusion equation in one-dimensional geometry is solved by using Green's function. In the first section, using Green's tensor, the group-diffusion equation is transformed into a system of linear equations which contain only the fluxes at the interfaces between the regions. Solving this equation, we obtain the fluxes at the interfaces and then the flux inside the regions with the aid of Green's tensor. This treatment is the same kind of approach as that of the response matrix method or the theory of invariant imbedding. In the second section, the group-diffusion equation is solved by the source iteration method. Using Green's function, the exact three-point difference equation is obtained and the explicit forms for the slab, cylindrical, and spherical geometry are given. It is shown that the usual three-point difference equation is obtained if the source term is approximated to be flat piecewise and if Green's function is expanded into Taylor's series neglecting all but the first two terms. Sample calculations for a thermal and a fast reactor show that the improved difference equation obtained by approximating the source term by a polynomial of second degree is more accurate than the usual three-point difference equation.