ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
C. K. Sanathanan, J. C. Carter, L. T. Bryant, L. W. Amiot
Nuclear Science and Engineering | Volume 28 | Number 1 | April 1967 | Pages 82-92
Technical Paper | doi.org/10.13182/NSE67-A18670
Articles are hosted by Taylor and Francis Online.
The use of a hybrid computer results in an efficient method of analyzing the transience in high-performance nuclear reactor cores using ceramic fuels such as UO2. The nature of the space dependence of the variables is such that a great deal of multiplexing of computer components is possible. Asa consequence of multiplexing, an iterative procedure is necessary to obtain the closed-loop system response for a finite (but arbitrary) interval of time. A mathematical proof of the uniform convergence of the iterative process has been obtained. This proof is based on the principle of contraction mapping. The economy which may be realized in computer equipment and programming effort for this area of system analysis is discussed with illustrative examples. The computing techniques developed are applicable to the analysis of any nonlinear feedback control system.