ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
Thomas S. Bustard, Joseph Silverman
Nuclear Science and Engineering | Volume 28 | Number 1 | April 1967 | Pages 55-61
Technical Paper | doi.org/10.13182/NSE67-A18667
Articles are hosted by Taylor and Francis Online.
An analysis is performed which indicates that beta particle backscattering measurements are highly sensitive to source-scatterer separation distances. It is shown that the primary betas emitted by the source strike the scatterer according to a Cauchy statistical distribution. Then, making the assumption that the primary betas are adsorbed on the scatterer and isotropically reemitted, an effective counting geometry can be obtained. A comparison of this effective geometry with the source geometry will then give an indication of the expected backscatter signal sensitivity. It is shown that a 50-mil separation distance can result in a backscatter measurement error of 25%. Zumwalt's empirical relationship for saturation backscattering is used to analytically predict the expected normalized (source signal equal to one) signal as a function of source-scatterer separation distance and scatterer atomic number. Finally, aluminum, nickel, niobium, palladium, and tantalum scatterers are employed using thallium-204 (204Tl) and phosphorus-32 (32P) beta sources in conjunction with a thin-window halogen-quenched G-M tube to compare experimental and analytical results. This experiment shows that Zumwalt's equation provides an excellent fit to the experimental results in all instances except when employing the low atomic number scatterer, aluminum.