ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
K. Chen, C. A. Erdman, M. F. Kennedy, A. B. Reynolds
Nuclear Science and Engineering | Volume 83 | Number 4 | April 1983 | Pages 459-472
Technical Paper | doi.org/10.13182/NSE83-A18649
Articles are hosted by Taylor and Francis Online.
A homogeneous nucleation-condensation growth model was developed for calculating particle-size distributions measured in capacitor discharge vaporization (CDV) experiments conducted at the Oak Ridge National Laboratory. Uranium dioxide pellets were partially vaporized in an argon environment by rapid energy deposition through capacitor discharge. This was followed by rapid expansion and subsequent condensation of the UO2 vapor. Measured primary particle-size distributions of the resulting aerosols were lognormal, with a geometric mean particle diameter of (0.014 ± 0.002) µm and a geometric standard deviation of 1.7 ± 0.1. It was postulated that the expanding UO2 vapor compressed the surrounding argon as in a spherical shock tube and that the aerosol was generated by homogeneous nucleation and condensation growth in the resulting rarefaction wave. The calculated motion of the U02-argon interface is in approximate agreement with the movies of the expansion process. The calculated particle-size distributions are in agreement with the measured distributions except at the large particle end. This agreement indicates that the small primary particles from the CDV tests resulted from homogeneous nucleation and condensation growth, as assumed in the analytical model.