ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
S. J. Lee, R. W. Albrecht
Nuclear Science and Engineering | Volume 83 | Number 4 | April 1983 | Pages 427-443
Technical Paper | doi.org/10.13182/NSE83-A18647
Articles are hosted by Taylor and Francis Online.
The diagnostics of control rod vibrational anomalies using the measurable power spectral densities of in-core neutron detectors are studied analytically. The frequency-dependent Langevin equations are derived in a general way, based on the two-group diffusion theory for a reflected reactor. The adjoint function technique is applied to obtain the fluctuation of the flux. Following this, frequency responses to the control rod vibration are derived and are checked conceptually. A typical pressurized water reactor is used for the numerical investigations. The main computations are associated with the frequency responses to the vibration of a control rod. It is shown that the frequency responses have a plateau region for frequency roughly between 0.5 and 50 rad/s. The frequency of 5 Hz within the plateau region may be chosen for further calculations. The global and local components of the neutron noise are investigated and discussed, following the original global/local concept, which is useful for interpretation. The frequency responses as functions of the position of a detector for a given equilibrium position of an absorber rod are studied in some detail. The noise phenomena as seen from the numerical investigations are explained. The frequency responses as functions of the position of an absorber rod for a given position of a detector, related to the problem of localization of a vibrating control rod, are also investigated. From the signals obtained from in-core neutron detectors and the corresponding frequency responses, one can localize the vibrating rod or even possibly estimate the root-mean-squared amplitude of the vibration using a “contour” method. The result is expected to be that an appropriate action may be taken in time to prevent further deterioration of the vibratory phenomenon.