ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Eishi Ibe, Shunsuke Uchida
Nuclear Science and Engineering | Volume 89 | Number 4 | April 1985 | Pages 330-350
Technical Paper | doi.org/10.13182/NSE85-A18625
Articles are hosted by Taylor and Francis Online.
Dependencies of radiolytic aspects on geometric and operational conditions of boiling water reactor (BWR) primary systems were studied for normal operation or for hydrogen alternate water chemistry (HAWC) by using a computer simulation code AQUARY. Statistical regression analyses were applied to those calculated results and a great many close correlations were found among radiolytic concentrations. In the course of the study, it was discovered that residence time and energy deposition rate in the downcomer had a critical effect on HAWC. A set of simple estimation formulas for radiolytic conditions was proposed for normal BWR operation, and the following prediction formulas were proposed for the oxygen gas release rate and oxygen concentration in the recirculation line under HAWC: .