ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
D. Ingman, E. Taviv
Nuclear Science and Engineering | Volume 92 | Number 4 | April 1986 | Pages 550-569
Technical Paper | doi.org/10.13182/NSE86-A18612
Articles are hosted by Taylor and Francis Online.
Mapping of source-hydrogenous medium systems within the framework of three-group diffusion theory is discussed. Each system is presented by the point of the map with coordinates: X ratio of first- and second-group diffusion lengths, and Г ratio of slowing down and thermal diffusion lengths. This mapping leads to the method of source-medium systems classification, which reduces the phase space of the problem. In accordance with this method, source-medium systems can be characterized by only two parameters, scale and shape. Thermal flux in the systems with the same shape parameter can be described with the same “generalized flux function (GFF).” The approach of GFFs is investigated for direct and inverse problems. The first one is presentation of thermal flux for certain source-medium systems with the help of these functions, and the second one is estimation of medium neutron transport parameters from the measured thermal flux through GFFs.