ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
D. Ingman, E. Taviv
Nuclear Science and Engineering | Volume 92 | Number 4 | April 1986 | Pages 550-569
Technical Paper | doi.org/10.13182/NSE86-A18612
Articles are hosted by Taylor and Francis Online.
Mapping of source-hydrogenous medium systems within the framework of three-group diffusion theory is discussed. Each system is presented by the point of the map with coordinates: X ratio of first- and second-group diffusion lengths, and Г ratio of slowing down and thermal diffusion lengths. This mapping leads to the method of source-medium systems classification, which reduces the phase space of the problem. In accordance with this method, source-medium systems can be characterized by only two parameters, scale and shape. Thermal flux in the systems with the same shape parameter can be described with the same “generalized flux function (GFF).” The approach of GFFs is investigated for direct and inverse problems. The first one is presentation of thermal flux for certain source-medium systems with the help of these functions, and the second one is estimation of medium neutron transport parameters from the measured thermal flux through GFFs.