ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
General Matter to build Kentucky enrichment plant under DOE lease
The Department of Energy’s Office of Environmental Management announced it has signed a lease with General Matter for the reuse of a 100-acre parcel of federal land at the former Paducah Gaseous Diffusion Plant in Kentucky for a new private-sector domestic uranium enrichment facility.
M. R. Baer, S. K. Griffiths, J. E. Shepherd
Nuclear Science and Engineering | Volume 88 | Number 3 | November 1984 | Pages 436-444
Technical Paper | doi.org/10.13182/NSE84-A18597
Articles are hosted by Taylor and Francis Online.
Water fogs are recognized as an effective means to mitigate the effects of large-scale hydrogen combustion that might accompany some loss-of-coolant nuclear reactor accidents. Fogs of sufficiently high density to produce large beneficial effects may, however, be difficult to generate and maintain. An alternate method of suspending the desired mass of water is via high expansion-ratio aqueous foams. Because, in practice, the foam would be generated using the combustible gaseous contents of the containment vessel, combustion occurs inside the foam cells. Although foams generated with inert gas have been well studied for use in fire fighting, little is known about combustion in foams generated with flammable mixtures. To help assess the usefulness of aqueous foams in a mitigation plan, several open-tube tests and more than 100 closed-vessel tests of hydrogen/air combustion, with and without foam were conducted. At low and intermediate hydrogen concentrations, the foam has little effect on the ultimate isochoric pressure rise. Above 15% hydrogen concentration, the foam causes a significant reduction in the pressure rise. The maximum effect occurs at ∼28% hydrogen (the stoichiometric limit is 29.6% hydrogen) where the peak overpressure is reduced by 2½. Despite this overall pressure reduction, the flame speed is increased by up to an order of magnitude for combustion in the foam, and strong pressure fluctuations are observed near a hydrogen concentration of 23%.