ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
A. K. Hertrick, R. A. Riddell, R. E. Schwirian, G. M. Dorogy, W. J. Bryan, R. J. Hopkins
Nuclear Science and Engineering | Volume 88 | Number 3 | November 1984 | Pages 396-403
Technical Paper | doi.org/10.13182/NSE84-A18593
Articles are hosted by Taylor and Francis Online.
Comparisons of analytical and experimental results are presented for the fluid jetting resulting from the existence of small gaps between parallel flow regions with dissimilar hydraulic characteristics. The experiment simulates the baffle gaps between a nuclear reactor core and the peripheral region around it, called the barrel-baffle region. Baffle gap fluid velocities are measured by a technique in which the only disturbance to the gap flow is a small pressure tap in the gap wall. The analysis uses an iterative, hydraulic network approach and is shown to yield good results when compared to the measured gap jet velocity and pressure drop distributions.