ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Nobuaki Ohnishi, Kiyomi Ishijima, Sadamitsu Tanzawa
Nuclear Science and Engineering | Volume 88 | Number 3 | November 1984 | Pages 331-341
Technical Paper | doi.org/10.13182/NSE84-A18587
Articles are hosted by Taylor and Francis Online.
The empirical correlations for subcooled film-boiling heat transfer during a reactivity-initiated accident in light water reactors are derived from inverse heat conduction calculations using the cladding surface temperatures measured in in-reactor experiments. The experimental data for cold startup conditions (subcoolings of ∼10 to 80 K and coolant velocities of ∼0 to 2 m/s at atmospheric pressure) and hot standby conditions (subcooling of ∼10 to 40 K, system pressures of 7.2 and 16 MPa, and system temperatures of 550 and 580 K) are used for this investigation. The present correlations are compared with existing correlations from ex-reactor experiments. The results of transient fuel behavior calculations with a computer code that included the present correlations are in good agreement with the corresponding measured data from the experiments.