ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
Akira Sakurai, Masahiro Shiotsu, Koichi Hata
Nuclear Science and Engineering | Volume 88 | Number 3 | November 1984 | Pages 321-330
Technical Paper | doi.org/10.13182/NSE84-A18586
Articles are hosted by Taylor and Francis Online.
Film-boiling heat transfer on a horizontal test heater in a pool of saturated and subcooled water was investigated at pressures ranging from 20 kPa to 2 MPa. Platinum rods of 0.7, 1.2, 2, 3, and 5 mm in diameter were used as the test heater. A semiempirical equation and a modified Bromley equation were given, both of which could express the saturated film-boiling heat transfer coefficients within ±5% error. The heat transfer coefficients for a certain range of heater diameters under saturated and subcooled conditions were expressed within ±10% error by the two-phase boundary-layer film-boiling model with the boundary condition of equal liquid and vapor interfacial velocities. Pressure dependence of the minimum film-boiling temperature for pressure <1.1 MPa was clearly different from that for pressure >1.1 MPa. Minimum temperature in the lower pressure region seems to be determined by the hydrodynamic Taylor instability and that in the higher pressure region by the heterogeneous spontaneous nucleation limit. However, minimum temperature and heat flux of saturated film boiling in the former region did not agree with those of conventional equations based on the Taylor instability. Empirical equations of interfacial wave length, departing bubble diameter, and frequency near the minimum film-boiling temperature for the lower pressure region were given. Minimum temperature and heat flux equations were presented based on these empirical equations.