ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
M. N. Moore
Nuclear Science and Engineering | Volume 25 | Number 4 | August 1966 | Pages 422-426
Technical Paper | doi.org/10.13182/NSE66-A18563
Articles are hosted by Taylor and Francis Online.
The propagation of a thermal-neutron pulse through homogeneous neutronic systems, multiplying or non-multiplying, is studied with the aid of the general linear model. This model is characterized by a complex dispersion law that governs the neutron-wave optics of the system. The dispersion of the pulse, which may be regarded as a superposition of a continuous spectrum of monochromatic waves, is also governed by the system dispersion law. It is shown that Fourier transformed moments of the pulse, evaluated at a sequence of detector positions within the system, yield derivatives of the dispersion law. The order of the derivative is just the order of the moment. In zero'th order, one reverts to the conventional neutron-wave experiment. Using this method of analysis, a thermal-pulse experiment, in principle, can be made to yield more information than can a wave experiment and could serve as the basis of an on-line monitor of power reactor stability.