ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NNSA furloughs 1,400 employees, pays contractors until end of month
After nearly three weeks of a government shutdown, the Department of Energy’s National Nuclear Security Administration has furloughed 1,400 employees and has retained 400 as essential employees who will continue working without pay.
M. N. Moore
Nuclear Science and Engineering | Volume 25 | Number 4 | August 1966 | Pages 422-426
Technical Paper | doi.org/10.13182/NSE66-A18563
Articles are hosted by Taylor and Francis Online.
The propagation of a thermal-neutron pulse through homogeneous neutronic systems, multiplying or non-multiplying, is studied with the aid of the general linear model. This model is characterized by a complex dispersion law that governs the neutron-wave optics of the system. The dispersion of the pulse, which may be regarded as a superposition of a continuous spectrum of monochromatic waves, is also governed by the system dispersion law. It is shown that Fourier transformed moments of the pulse, evaluated at a sequence of detector positions within the system, yield derivatives of the dispersion law. The order of the derivative is just the order of the moment. In zero'th order, one reverts to the conventional neutron-wave experiment. Using this method of analysis, a thermal-pulse experiment, in principle, can be made to yield more information than can a wave experiment and could serve as the basis of an on-line monitor of power reactor stability.