ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
David A. Sargis and Lawrence M. Grossman
Nuclear Science and Engineering | Volume 25 | Number 4 | August 1966 | Pages 395-406
Technical Paper | doi.org/10.13182/NSE66-A18560
Articles are hosted by Taylor and Francis Online.
The technique usually employed to estimate errors in approximation schemes for neutron physics problems is simply to compare the results with higher order approximations or purely numerical results, or with available experimental measurements. In this paper, an analytic error-estimating technique is developed for deriving error bounds for approximate eigenvalues, which depends only on the proximity of the exact and approximate eigenvalues and not on higher order approximations. An integral equation formulation is employed in developing the error estimating method, but the form of the integral equation kernel is not restricted, so that broad classes of integral equations may be treated. By means of the Green's function, differential-equation eigenvalue problems may also be handled. To illustrate the error estimating method, the space decay constant eigenvalue problem of neutron thermalization theory is discussed. Error bounds are developed for the space decay constant eigenvalues in both the Wilkins heavy-gas differential equation and Wigner-Wilkins integral-equation scattering models. The results obtained indicate that rigorous error estimates can be obtained with little computational effort.