ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
3D-printed tool at SRS makes quicker work of tank waste sampling
A 3D-printed tool has been developed at the Department of Energy’s Savannah River Site in South Carolina that can eliminate months from the job of radioactive tank waste sampling.
David A. Sargis and Lawrence M. Grossman
Nuclear Science and Engineering | Volume 25 | Number 4 | August 1966 | Pages 395-406
Technical Paper | doi.org/10.13182/NSE66-A18560
Articles are hosted by Taylor and Francis Online.
The technique usually employed to estimate errors in approximation schemes for neutron physics problems is simply to compare the results with higher order approximations or purely numerical results, or with available experimental measurements. In this paper, an analytic error-estimating technique is developed for deriving error bounds for approximate eigenvalues, which depends only on the proximity of the exact and approximate eigenvalues and not on higher order approximations. An integral equation formulation is employed in developing the error estimating method, but the form of the integral equation kernel is not restricted, so that broad classes of integral equations may be treated. By means of the Green's function, differential-equation eigenvalue problems may also be handled. To illustrate the error estimating method, the space decay constant eigenvalue problem of neutron thermalization theory is discussed. Error bounds are developed for the space decay constant eigenvalues in both the Wilkins heavy-gas differential equation and Wigner-Wilkins integral-equation scattering models. The results obtained indicate that rigorous error estimates can be obtained with little computational effort.