ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
Kiyoshi Takeuchi, Shun-ichi Tanaka
Nuclear Science and Engineering | Volume 87 | Number 4 | August 1984 | Pages 478-489
Technical Note | doi.org/10.13182/NSE84-A18514
Articles are hosted by Taylor and Francis Online.
Gamma-ray exposure buildup factors are calculated using a discrete ordinates direct integration code, PALLAS-PL, SP-Br, for water, concrete, iron, and lead, typifying materials of low, medium, and high atomic number. The radiation sources considered were both plane, at normal incidence, and at plane-isotropic. These data include the effects of secondary photon sources arising from Compton scattering, bremsstrahlung, and annihilation. Inclusion of a bremsstrahlung source influences the exposure buildup factors for high-energy photons in materials of high atomic number. The calculational accuracy is verified by comparing the PALLAS calculations with the results of experiments with both the energy spectrum and the attenuation dose transmitted through lead where the source is a plane isotropically incident 6.2-MeV gamma ray or a plane normally incident ∼8-MeV gamma ray. Comparisons are also made with other calculations of exposure buildup factors in water for a 0.5- and a 3.0-MeV plane normally incident source. The calculated buildup factors in each material are tabulated for incident energies of 0.1 to 15 MeV (except for lead where the lower energy is 0.4 MeV) and for penetration depths as great as 40 mfp.