ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
M. Abdelghany, M. C. Roco
Nuclear Science and Engineering | Volume 87 | Number 4 | August 1984 | Pages 469-478
Technical Note | doi.org/10.13182/NSE84-A18513
Articles are hosted by Taylor and Francis Online.
This Note suggests an improvement to the computational approach for axial turbulent flow in rod bundle subchannels. The turbulence anisotropy and its effects on the mean flow are numerically determined. The predictions require both fewer assumptions and empirical coefficients than the commonly used numerical methods. The physical model of turbulence proposed by Roco and Zarea in 1978 is used to express the Reynolds stresses in the momentum equations, in terms of the main flow kinetic energy multiplied by specific turbulence indices. All parameters, including the anisotropy factor, are predicted with a time efficient computer code written in FORTRAN IV. Galerkin's weighted residual finite element method is applied and the resulting system of algebraic equations is solved using Gaussian elimination with iterative improvement. The numerical scheme is applied for air flow in subchannels of a 3 × 6 rectangular array of rods and other rod arrangements. The results are in good agreement with the experiments using heated sensors, as well as with available analytical and experimental results. The approach applied here for the two-dimensional stream-cross case can be extended to three dimensional flow analysis.