ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Vincent P. Manno, Michael W. Golay, Kang Y. Huh
Nuclear Science and Engineering | Volume 87 | Number 4 | August 1984 | Pages 349-360
Technical Paper | doi.org/10.13182/NSE84-A18504
Articles are hosted by Taylor and Francis Online.
Analytical models formulated to model accurately hydrogen transport in containments are presented. These models have been incorporated into the LIMIT computer code. The thermofluid dynamic model options span a wide range of applicability from rapid blowdown-type events to slow near-incompressible hydrogen injection. The utilization of distinct modeling treatments for the various accident stages is important, since the blowdown period is governed by thermofluid dynamic mechanisms (high Mach number, turbulent, multiphase forced convection), which are different from those of the postblowdown phase (low speed, multiphase, stratified natural convection). Detailed ancillary models of molecular and turbulent diffusion, mixture transport, and thermodynamic properties and heat sink modeling are addressed. The numerical solution of the governing equations is accomplished in discretizations of varying refinement, as are required for the successive stages of a containment accident, and emphasizes efficiency and accuracy. Two demonstration calculations are reported including the successful simulation of a large-scale experiment and the reproduction of an analytic result. Areas worthy of future development are also described. Overall, a versatile analysis methodology is introduced.