ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Vincent P. Manno, Michael W. Golay, Kang Y. Huh
Nuclear Science and Engineering | Volume 87 | Number 4 | August 1984 | Pages 349-360
Technical Paper | doi.org/10.13182/NSE84-A18504
Articles are hosted by Taylor and Francis Online.
Analytical models formulated to model accurately hydrogen transport in containments are presented. These models have been incorporated into the LIMIT computer code. The thermofluid dynamic model options span a wide range of applicability from rapid blowdown-type events to slow near-incompressible hydrogen injection. The utilization of distinct modeling treatments for the various accident stages is important, since the blowdown period is governed by thermofluid dynamic mechanisms (high Mach number, turbulent, multiphase forced convection), which are different from those of the postblowdown phase (low speed, multiphase, stratified natural convection). Detailed ancillary models of molecular and turbulent diffusion, mixture transport, and thermodynamic properties and heat sink modeling are addressed. The numerical solution of the governing equations is accomplished in discretizations of varying refinement, as are required for the successive stages of a containment accident, and emphasizes efficiency and accuracy. Two demonstration calculations are reported including the successful simulation of a large-scale experiment and the reproduction of an analytic result. Areas worthy of future development are also described. Overall, a versatile analysis methodology is introduced.