ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
Bernard I. Spinrad, James S. Sterbentz
Nuclear Science and Engineering | Volume 90 | Number 4 | August 1985 | Pages 431-441
Technical Paper | doi.org/10.13182/NSE85-A18491
Articles are hosted by Taylor and Francis Online.
The Wigner-Seitz cell problem is treated by integral transport theory as a superposition of black boundary problems using the volume source and sources equivalent to the two lowest order angular components of the reentrant flux. This treatment sheds light on the convergence properties of iterative integral transport solution methods. The outgoing flux is required to have the lowest order components equal and opposite to those of the reentrant flux. Sample problems with this P11 boundary condition give good results. A new approximation to neutron transport theory is also reported. This approximation does not rely on expansion or approximation of the angular flux distribution, but rather on approximating the integral transport kernel by a sum of diffusionlike kernels that preserve spatial moments of the kernel. This might permit transport problems to be treated as a set of coupled diffusion problems in any geometry.