ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Bernard I. Spinrad, James S. Sterbentz
Nuclear Science and Engineering | Volume 90 | Number 4 | August 1985 | Pages 431-441
Technical Paper | doi.org/10.13182/NSE85-A18491
Articles are hosted by Taylor and Francis Online.
The Wigner-Seitz cell problem is treated by integral transport theory as a superposition of black boundary problems using the volume source and sources equivalent to the two lowest order angular components of the reentrant flux. This treatment sheds light on the convergence properties of iterative integral transport solution methods. The outgoing flux is required to have the lowest order components equal and opposite to those of the reentrant flux. Sample problems with this P11 boundary condition give good results. A new approximation to neutron transport theory is also reported. This approximation does not rely on expansion or approximation of the angular flux distribution, but rather on approximating the integral transport kernel by a sum of diffusionlike kernels that preserve spatial moments of the kernel. This might permit transport problems to be treated as a set of coupled diffusion problems in any geometry.