ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Dušan Babala, Kåre Hannerz
Nuclear Science and Engineering | Volume 90 | Number 4 | August 1985 | Pages 400-410
Technical Paper | doi.org/10.13182/NSE85-A18488
Articles are hosted by Taylor and Francis Online.
Current light water reactors (LWRs) depend for the protection of core integrity on a multitude of active systems and components, such as instrumentation, cables, electronic logics, relays, actuators, etc., and on human judgment. This approach to safety has led to a complex and expensive plant design in which all parts of the plant where these systems are present must be protected against damage due to, e.g., earthquake. It has also failed to persuade the public about the safety of the reactors because of the existing (but very small) probability of multiple failures leading to core meltdown. With the process inherent ultimate safety (PIUS) approach, this dependence on active systems is eliminated. The safety is now no longer a result of their intervention but is built into the thermohydraulics of the primary system itself. The PIUS primary system response to a number of severe anticipated transients without scram (ATWS) is described, as studied by means of a specially developed computer simulation program. The method is shown by which the thermohydraulic self-protection properties of the primary system terminates these ATWS transients, which could have severe consequences in a conventional LWR, with neither the core nor the rest of the plant suffering any damage (beyond the initial failure assumed). This has important economic consequences. The surveillance and control systems used to run the plant and the buildings in which they are housed can be designed as for a fossil plant, since they no longer have the ultimate responsibility for nuclear safety. The ensuing design simplification pays for the more expensive pressure vessel and primary system. Inherent safety is obtained as a bonus.