ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
R. Gordon, V. E. Schrock, R. N. Stuart, A. J. Kirschbaum
Nuclear Science and Engineering | Volume 17 | Number 4 | December 1963 | Pages 537-546
Technical Paper | doi.org/10.13182/NSE63-A18445
Articles are hosted by Taylor and Francis Online.
The distribution of fissions within one fuel pin of a cluster is asymmetrical because of self-shielding and neutron streaming phenomena. An implicit solution of the integral form of the Boltzmann equation indicates that, for a given neutron spectrum, this distribution is primarily a function of three dimensionless parameters: (1) pin radius/neutron mean free path in pin material; (2) pin circle radius/pin radius; and (3) pin radius/fuel element radius. The actual distribution was determined experimentally by detector foils and autoradiographic techniques for various seven-pin, cluster type, gas-cooled fuel elements. The experimental fuel pins were fabricated by winding alternate 0.001 in. thick layers of pure aluminum and enriched uranium (93% U235) on a solid core until the desired pin diameter was reached. Seven of these pins, assembled into a fuel element, were irradiated in the thermal column of a research reactor. The layers of uranium and the uranium detector foils (which had been exposed concurrently) were subsequently autoradiographed and the resulting x-ray film optical density measured on a microdensitometer. The detector foils were also counted in a gamma detector, thus providing a key between relative radioactivity and optical density. It was found that the fission distribution within the center pin of the cluster was symmetrical and could be represented by The fission distribution in the outer pins of the cluster was asymmetrical with respect to the pin center but could be represented by Values of the constants in the above equations are correlated by the first two dimensionless parameters given above but appear to be independent of the third.