ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
S. K. Trikha, P. S. Grover
Nuclear Science and Engineering | Volume 26 | Number 4 | December 1966 | Pages 447-452
Technical Paper | doi.org/10.13182/NSE66-A18415
Articles are hosted by Taylor and Francis Online.
In the case of crystalline (coherent) moderators, it has been observed that the trapping of neutrons in the Bragg peaks greatly affects the decay of a neutron pulse from inside small assemblies and leads to a much larger value of the observed decay constant as compared to the theoretical limit. In the present paper we report a theoretical study of the pulsed neutron problem in finite assemblies of incoherent solid moderators. We find that even in the absence of the trapped neutrons, it will take a very long time for the decay constant to approach the theoretical asymptotic limit (υ∑s)min. A study of transient spectra has also been made in these assemblies. We find that for large assemblies (B2 < ), the value of λ calculated from the study of transient spectra agrees well with the asymptotic decay constant. However, for small assemblies, the equilibrium is not attained within 600 μsec, the time limit of our studies.