ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Work advances on X-energy’s TRISO fuel fabrication facility
Small modular reactor developer X-energy, together with its fuel-developing subsidiary TRISO-X, has selected Clark Construction Group to finish the building construction phase of its advanced nuclear fuel fabrication facility, known as TX-1, in Oak Ridge, Tenn. It will be the first of two Oak Ridge facilities built to manufacture the company’s TRISO fuel for use in its Xe-100 SMR. The initial deployment of the Xe-100 will be at Dow Chemical Company’s UCC Seadrift Operations manufacturing site on Texas’s Gulf Coast.
Sevim Tan
Nuclear Science and Engineering | Volume 30 | Number 3 | December 1967 | Pages 436-447
Technical Paper | doi.org/10.13182/NSE67-A18403
Articles are hosted by Taylor and Francis Online.
A solution of the zero-power kinetic equations for sinusoidal excess reactivity insertions, previously obtained by the author by Wentzel-Kramers-Brillouin approach (WKB), is further discussed. Explicit equations for the reactor period, reactivity bias, and stabilized reactor response, within the range of applicability of the method, are derived. Harmonic contents of the logarithm of flux for both pure and properly biased sinusoidal reactivity variations are analyzed. Fourier components of flux yielding the new steady-state mean power, the fundamental and the second harmonic are given. Results of the treatment are extended to the describing function of a low-power nuclear reactor and the major error involved in the earlier literature is indicated. The procedure, although developed under the assumption of one average group of delayed neutrons, is expected to yield very satisfactory results even if generalized to multigroup treatment.